Rapid Manufacturing Research Group

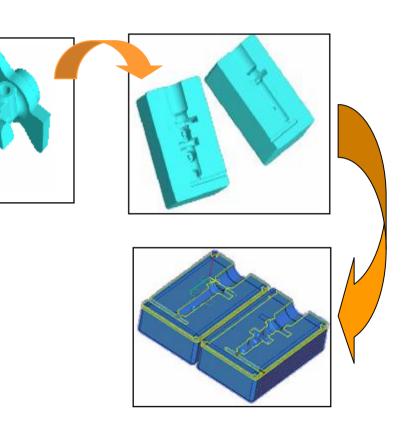
Rapid Tooling Techniques for the Die-Casting Industry

Presented by Andy Norwood

e-mail: <u>a.j.norwood@lboro.ac.uk</u>

web page: www.lboro.ac.uk/departments/mm/research/rapid-manufacturing/index.html

Overview

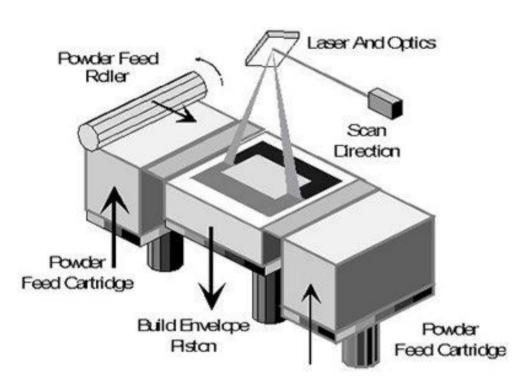

- Rapid tooling process's
 - Laminate tooling
 - laser sintering
 - Wiba process
- Advantages over current tooling techniques
 - Conformal cooling
 - Shorter cycle times
 - Reduction / elimination of design constraints
- Research and future technology......

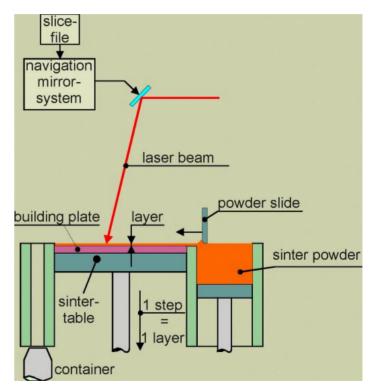
Rapid Tooling Process's

- Additive method of tool manufacture.
- 3D stl CAD file of the component required.
- 3D stl CAD file of the die halves created from the component file.
- Files sliced producing the layer by layer building data.

Laminate Tooling

- Laminated tools are produced by laser cutting H13 sheet steel.
- Bolted or braze bonded together.
- Dies are finished by either high speed machining or electrical discharge machining.

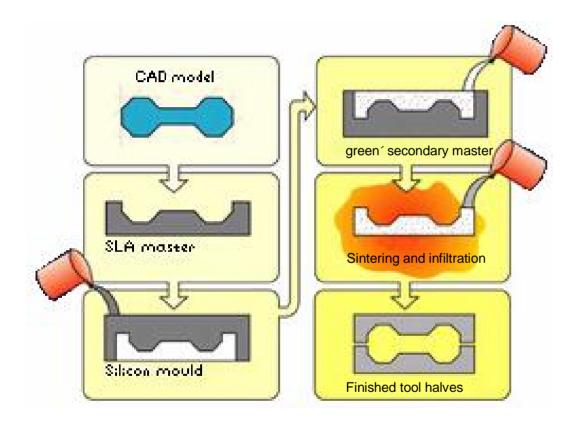


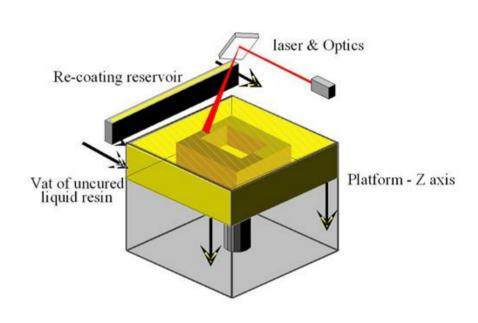


Laser Sintering (LS)

Methods used to manufacture inserts

Selective Laser Sintering

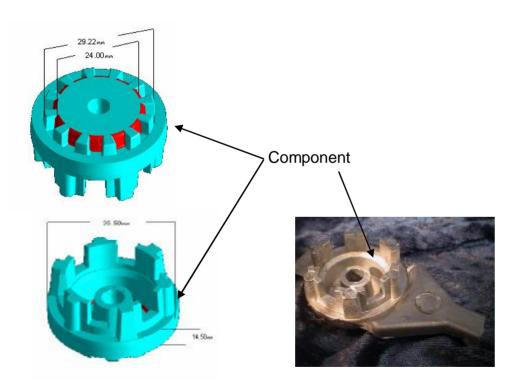


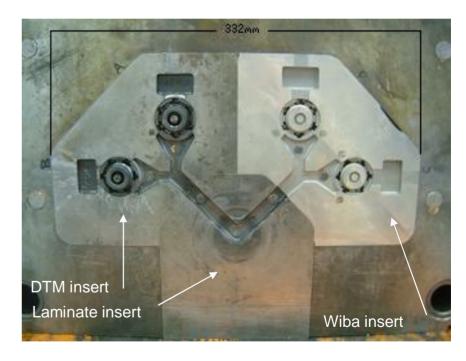


Wiba tool (Metal Copy)

SLA Process

Advantages Over Current Tooling Techniques


- Greater control and uniform die temperatures achievable
- Faster solidification rates
- Improved productivity
- Less constraints on tool and component geometry
- Die design validation
- Component can be tested for functionality



Research

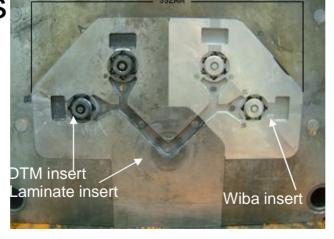
- Aluminium (LM24) clutch housing die provided by Dyson & Kemlows Diecasting Products Ltd
- Tool ran on a Frech 125 DAK SDV cold chamber die-casting machine

Casting Technique

- Insert water channels tested for leaks
- Aluminium LM24 melt temperature 710°C
- Die pre heated to 150°C 200°C
- Cycle time 20s 24s (production speeds)
- Die lubrication delta cast 333 R3 every two shots
- Water cooling of biscuit area and plunger tip

Casting Technique Continued

Operator Starting cycle 1-2 sec	Die Close 1sec	Ladling 5-8 sec	Injection 1 sec	Solidification 3 sec		Die Open 3 sec	Ejection 3 sec	Release Agent 3 sec
Operator Starting cycle 1-2 sec	Die Close 1sec	Ladling 5-8 sec	Injection 1 sec	Solidification ? sec	Die Open 3 sec	Ejection 3 sec	Release Agent 3 sec	



Laminate Insert Performance

- 500 components cast prior to the braze failing in the biscuit area.
- Conformal cooling insert reduced solidification time reduced from 3 seconds to 1 second

No signs of wear or hot cracking of the H13 sheet

steel laminates

Wiba and LS Insert Performance

- 100 castings produced prior to hot cracking on both DTM and Wiba inserts.
- Cracks continued to propagate during casting run.
- Casting run was stopped after 500 castings due to laminate insert failing.

Insert Costs

- Laminate insert
 - CAD modelling time
 - H13 sheet steel price
 - Laser cutting cost and time
 - Nickel brazing cost and time
 - Machining cost and time
 - Total time = 7 days
 - Total cost = £1500

Insert Costs Continued

- Laser sintered insert
 - CAD modelling
 - LS build time and material
 - Machining
 - Total time = 7 days
 - Total cost = £1700

Insert Costs Continued

- Wiba insert
 - CAD modelling
 - SLA Master build time and material
 - Silicon negative mould build time and material
 - Cast green part time and material
 - Infiltration and sintering time and material
 - Machining
 - Total Time to manufacture= 10 days
 - Total Cost = £1900

Research Conclusions

- Conformal cooling has been proven to reduce solidification time.
 - Reductions of 11% in the clutch housing die
- Prototyping quantities are achievable
 - 100 defect free castings produced
 - 500 castings manufactured in total
- The rapid tooling techniques allow validation of a die design prior to the manufacture of a production tool
- Components can be mechanically tested and compared to design specifications.

Future Technology

- Material Advancement
 - Improving laminate tooling
 - Alternative or improved bonding technique
 - Material improvement for LS and Wiba
 - Fully dense inserts
 - Alternative infiltrating with a low melting point alloy
 - Improved sintering powders
 - Heat treatable materials to 40 50 Rc

Future Technology Continued

- Process change or improvement
 - Hot isostatic pressing (HIP)
 - Diffusion bonding of laminate dies
 - Diffusion bonding of laminate billet containing conformal cooling channels, from which the core and cavity machined.
 - Tool strength, ductility and fatigue life may improve since hipping removes porosity from materials
 - Functional graded tooling
 - Ultrasonic welding
 - Integrated conformal cooling channels
 - Functional graded tooling

Future Technology Continued

- Tool design
 - Hybrid tooling (combination of manufacturing techniques to produce inserts in a die)

Review

- Rapid tooling for the die-casting industry is in the early stages of development due to the temperatures and pressures involved in the process.
- Research needs to develop to produce a robust cost effective rapid tooling technique.
- If achievable the benefits would be overwhelming
- Potential to Improved die life
- Die validation, component validation etc.
- Conformal cooling channels reduce cycle times

Questions?

Andy Norwood
Rapid Manufacturing Research Group
Wolfson School of Mechanical and Manufacturing Engineering
Loughborough University
Leicestershire
LE11 3TU
UK

Tel. +44 (0) 1509 227 567 Fax. +44 (0) 1509 227 549

Email <u>a.j.norwood@lboro.ac.uk</u>

web page: www.lboro.ac.uk/departments/mm/research/rapid-manufacturing/index.html

